

Swedish Electromobility Centre

Fuel cell heavy duty trucks

Magnus Karlström (Swedish E-mobility Centre) Hans Pohl (RISE) Elna Holmberg (Swedish E-mobility Centre) Anders Grauers (Chalmers)

omEV.se

Two studies about Fuel Cell Trucks

2017-2018 (delayed)

 Can fuel cells become a mass produced option globally for heavy duty trucks 2030+? An exploratory study

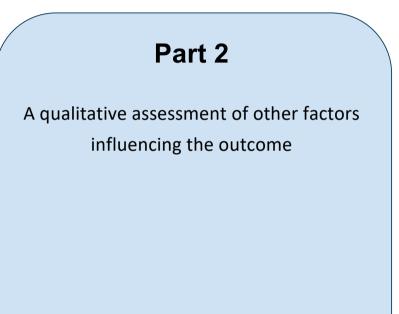
Magnus Karlström, Hans Pohl, Elna Holmberg, Anders Grauers

2019-

 Hydrogen fuel cell trucks 2030 – next step Hans Pohl, Magnus Karlström Partners: RISE Viktoria AB, SEC, AB Volvo, Scania CV AB, Trafikverket

Can fuel cells become a mass produced option globally for heavy duty trucks 2030+? An exploratory study

Part 1


Total Cost of Ownership study

Compare FCV, BEV, ICE, ERS (Electric Road Systems)

Year: 2030+

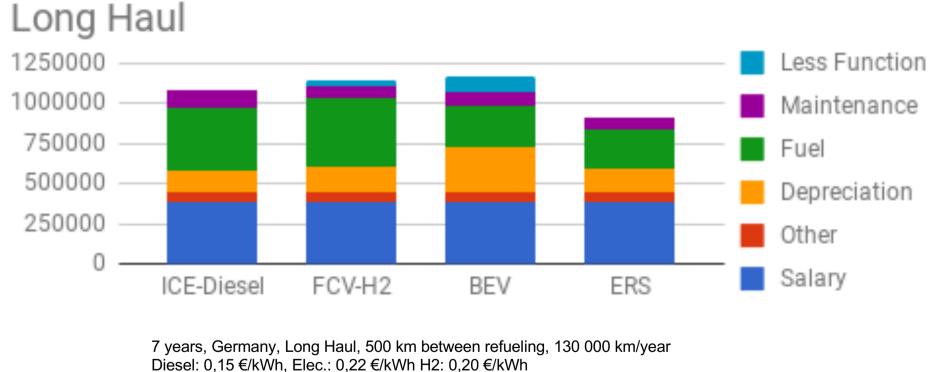
Main case Germany, long haul

But also Regional, City distribution And India, USA, China

Description of TCO study

Exploratory

Simplified (for example no lifetime issues with fuel cells, batteries and hydrogen storage)


Data based on publicly available literature

Discussed with stakeholders

Ownership cost of first owner of Heavy Duty Truck

Preliminary Result TCO Germany Long Haul (€)

Fuel cell: 51 \in /kW Battery: 150 \in /kWh

Preliminary conclusion one: Factors with high total cost impact

	Low total cost impact	High total cost impact
High uncertainty	Cost of fuel cell system Cost of hydrogen storage Cost of electric machine	Cost of hydrogen, electricity, diesel Residual value of BEV, FCV Less transport efficiency Km between refuelling Battery life length Cost of Battery
Low uncertainty	Not Listed	Total mileage Cost of HEV powertrain Powertrain efficiencies Maintenance costs

Preliminary conclusion two

€/km for different fuels much more important than powertrain costs, such as fuel cell cost

Preliminary conclusion three

TCO consequences If less tkm or m³km because of extra weight/volume of battery/hydrogen storage

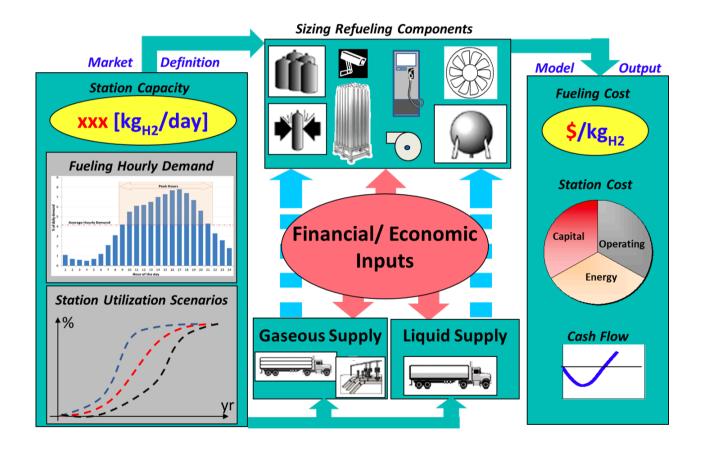
Preliminary conclusion four

City and regional better (TCO) for FCV than long haul compared with ICE

However, ERS even better

Hydrogen fuel cell trucks 2030 – next step

- This application aims to enable another step towards a solid understanding of the conditions for fuel cell trucks to become a mainstream option.
- The proposed project will use new driving data from trucks as an input to enhance the quality of the analysis.
- More specifically, three energy-related topics will be addressed;
 - fuels and infrastructure,
 - plug-in fuel cell trucks
 - and applications
 - Now we narrow the study to cover conditions in city and regional use and more specific applications, such as refuse collection



Fuels and infrastructure

- The previous study highlighted that the cost of fuel is very important for truck applications
- To keep the costs down, the charging or refuelling station should be used as many hours per day as possible.
- Our ambition in this project is to improve the quality of the cost of fuel assessments, mainly through case studies based on real world truck use data.

Example: HEAVY-DUTY REFUELING STATION ANALYSIS MODEL (HDRSAM)

Magnus Karlström | Swedish Electromobility Centre

Industry group signs MOU to develop and test hydrogen fueling hardware for heavy-duty vehicles

- Hydrogen suppliers & fuel cell electric vehicle (FCEV) automakers, Air Liquide, Hyundai, NEL, Nikola Motor, Shell and Toyota have signed a Memorandum of Understanding (MOU) for hydrogen fueling components for the purpose of testing state-of-the-art heavy duty (HD) hydrogen fueling hardware to assist in standardization and speed to market for fuel cell electric trucks.
- Under the MOU, the cross-industry group of both vehicle and infrastructure companies will test pre-commercial 70MPa hydrogen heavy duty vehicle high flow (H70HF) fueling hardware for future Class 8 (40 Ton) trucks.

Preliminary conclusions

Questions

Magnus.karlstrom@chalmers.se

Magnus Karlström | Swedish Electromobility Centre