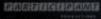
# XX MODSTRUKTION



# Design and requirements specification for developing fuel cell propelled BE-trucks



By Al Gore 2006


> by far the most terrifying film you will ever see.

#### aninconvenient truth

A GLOBAL WARRING

https://www.youtube.com/watch?v=I-SV13UQXdk

now playing in select theaters



County COTTE W MAARON CASSES A SVENU of MAARON POLICES AT BUSINESS AND BUSINESS.



# A part of the solution to climate change is Zero Emission transportation



# That is: Electric Vehicles (EV)



#### That is:

**Battery Electric Vehicles (BEV)** 



#### That is:

**Battery Electric Vehicles (BEV)** 

Fuel Cell Electric Vehicles (FC-EV)



#### **Heavy E-Trucks**















#### **Heavy FC-Trucks**













#### City logistics / Urban logistics

Several serious logistic companies have been involved, as:

- DHL
- DB Schenker
- Ragnsell
- Postnord
- Bring

- martin&servera
- Polarbröd
- Svevia





#### City logistics / Urban logistics

Several serious logistic companies have been involved, as:

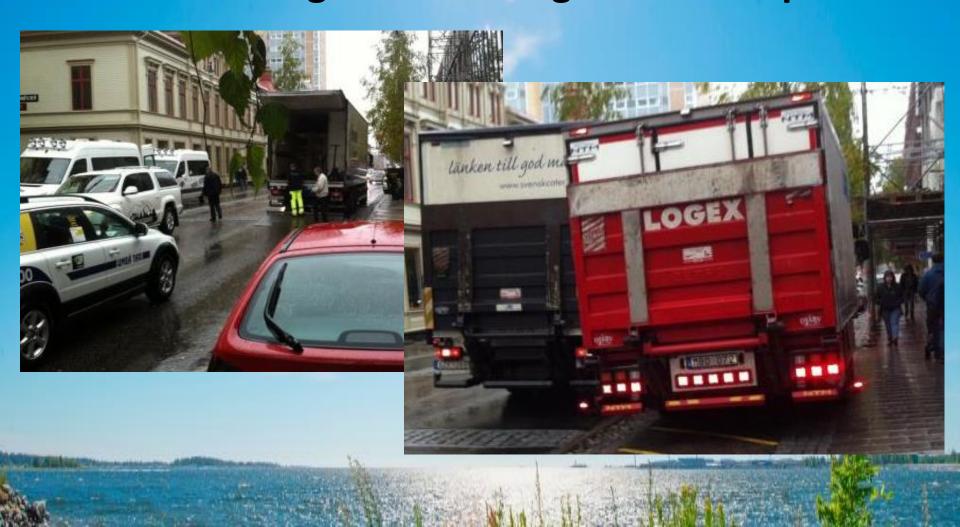
- DHL
- DB Schenker
- Ragnsell
- Postnord
- Bring

- martin&servera
- Polarbröd
- Svevia



#### City logistics / Urban logistics

Several serious logistic companies have been involved, as:


- DHL
- DB Schenker
- Ragnsell
- Postnord
- Bring

- martin&servera
- Polarbröd
- Svevia





#### The challange of urban logistics is complex:



## BW MODSTAUMTION



#### The challange of urban logistics is complex:

- Many different types of vehicles
- Has to compete in limited spaces
- Problems with loading/unloading



#### The basic solution is N1 (light) trucks







#### The basic solution is N1 (light) trucks

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton

#### The basic solution is N1 (light) trucks

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton
- = 6 x 250 kg roll cages



#### But this basic solution is not good enaugh

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton
- = 6 x 250 kg roll cages
- 4.2 m cargo length allows 15 and



#### But this basic solution is not good enaugh

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton
- = 6 x 250 kg roll cages
- But 4.2 m cargo length allows 15 and
- 5 m = 18 cages . . .

#### = OVERLOAD



#### But this basic solution is not good enough

- OVERLOAD calls for a N2 truck (max. 7.5 ton)
- N2 trucks needs C driver license & YKB
- = Higher costs
- = Shortage of drivers





#### The challange of urban logistics is more complex:

- Many different types of vehicles
- Has to compete in limited spaces
- Problems with loading/unloading
- Several types of environmental challenges
- Low efficiency and high energy consumption
- All in all = there is a need for a better solution



#### The needed solution is electric N1 (light) trucks

- Many different types of small trucks
- Are better in limited spaces
- Less problems with loading/unloading
- Zero emission and no noise
- High efficiency and low energy consumption
- All in all = basically a good solution

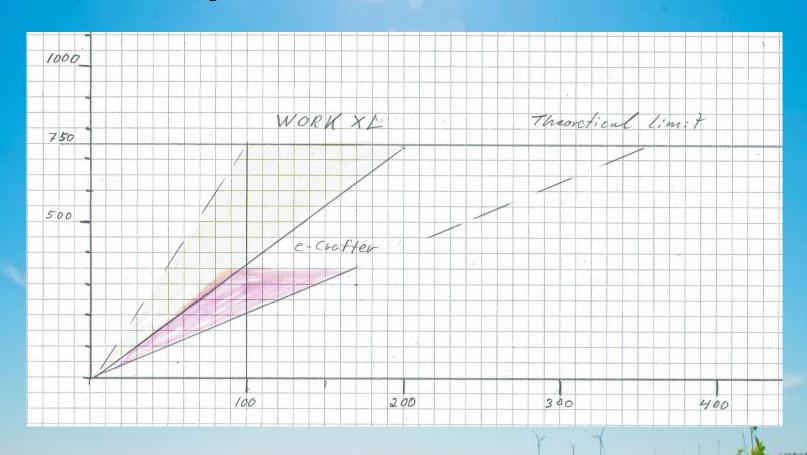


# The challange of electric N1 (light) trucks is the pay load / range

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton
- Needs at least 750 kg batteries
- With electric driveline a payload < 1 ton</li>

#### **N1** E-Trucks for urban logistics












#### **Battery needs for N1 E-Trucks**

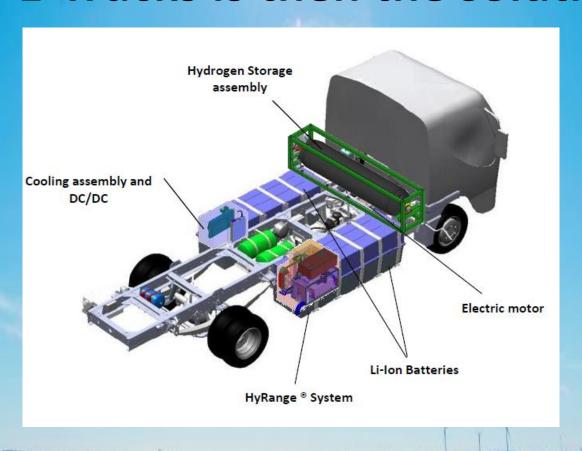




# The solution for Electric N1 (light) trucks for the same pay load / range as diesel:

- N1 = 3 500 kg maximum weight
- Gives with diesel driveline a payload = 1.5 ton
- Needs at least 750 kg batteries
- With electric driveline a payload < 1 ton</li>
- New N1 definition for electric truck = 4 250 kg
- Restores payload to 1.5 ton




# But we still need more pay load for many of the urban transports

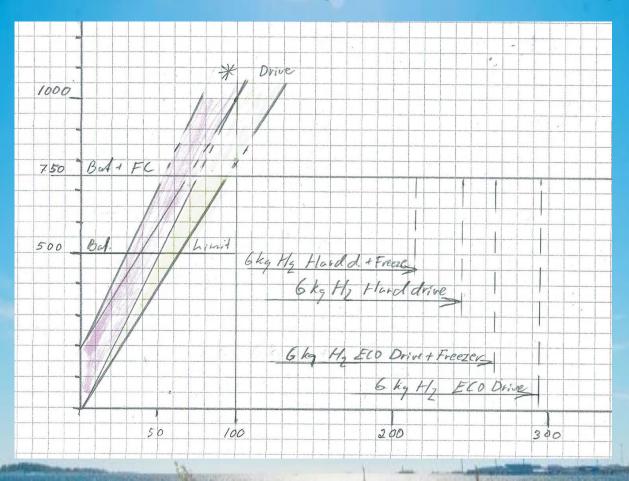


# But we still need more pay load for many of the urban transports and:

We often need loger range

#### FC-E-Trucks is then the solution






#### N1 FC-E Trucks are coming





#### N1 FC-E-Trucks gives the range





# But we need even more pay load for many of the urban transports



## BW BOUSTBURTION



# But we need even more pay load for many of the urban transports and:

We need cold storage for food



But we need even more pay load for many of the urban transports and:

We need cold storage for food and:

We also need sub-urban transports
= longer range demands



But we need even more pay load for many of the urban transports and:

We need cold storage for food and:

We also need sub-urban transports
= longer range demands

= impossible challange for N1 E-Trucks



Our focus has therefore been to create a solution to both urban and sub-urban zero emission logistics, that is basically simple but modular, scalable and very flexible

## BW MODSTAUMTION





### TW BOUSTBURTION



#### The BE driver licence







#### The BE-Trailer



### BW KONSTRUKTION



### The BE-Truck trick



Creates a N2- Trucks (7.5 ton) classified as N1 + O2 (/ O3)

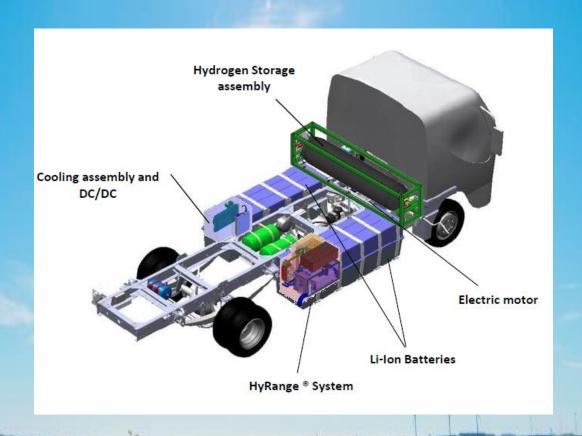


### The Electrical solution: The E-BE-Truck gives many benefits as:

- Many options from one truck chassis
- Zero emission and no noice
- Bigger pay load than N1 trucks
- But needs stronger motor = more energy
- = needs more batteries

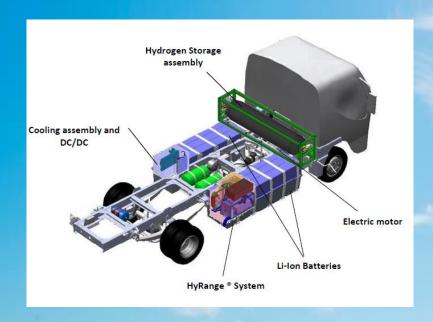


### The <u>Fuel Cell Electrical</u> solution: The FC-E-BE-Truck gives even more benefits as:


- Many options from one truck chassis
- Zero emission and no noice
- Needs less batteries
- Much bigger pay load than N1 trucks
- Much longer range
- All in all = basically a very good solution

### RW BOUSTBURTION





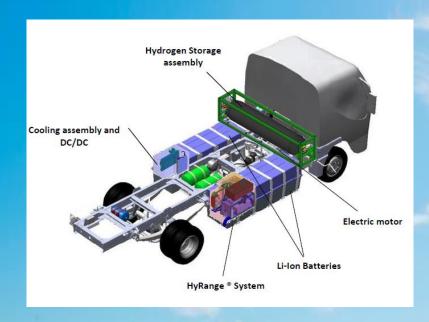

### The main challange for all electrification:



### XX MODSTBURTION

### The main challange for all electrification:




Weight and Weight distribution



### RW CONSTRUCTION

### (IIC)

### The main challange for all electrification:



Also with FC-E-BE-Truck

Weight and Weight distribution





## Our challange for the FC-E-BE-Truck Cold climate adaptation





### Our challange for the FC-E-BE-Truck

**Cold climate adaptation** 

**But also** 



### Our challange for the FC-E-BE-Truck

**Cold climate adaptation** 

Hot climate adaptation



### Our challange for the FC-E-BE-Truck

Cold days as -40 C° and

Hot days as +40 C°



### Our challange for the FC-E-BE-Truck From -40 C° to +40 C° and it's getting worse





### **Our solution for a FC-E-BE-Truck**







## Our solution for a FC-E-BE-Truck is based on our experience from other EV and FC-EV-projects including:



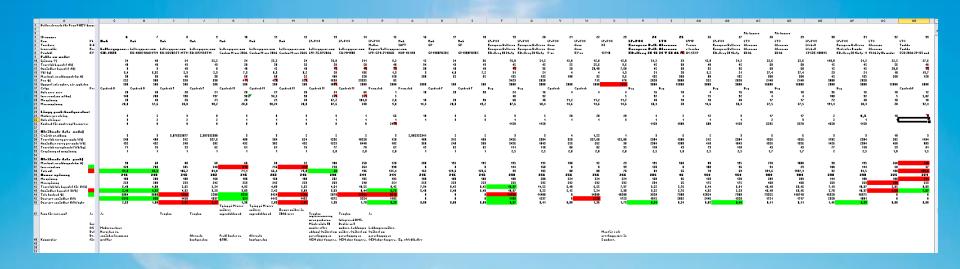
# Our solution for a FC-E-BE-Truck is based on our experience from other EV and FC-EV-projects including: Climate adaptions



## Our solution for a FC-E-BE-Truck is based on our experience from other EV and FC-EV-projects including:

Climate adaptions
Battery systems

### BW MODSTAUMTION




## Our solution for a FC-E-BE-Truck is based on our experience from other EV and FC-EV-projects including:

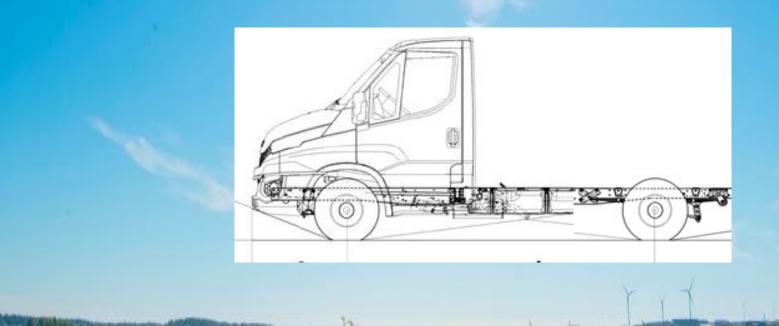
Climate adaptions
Battery systems
Fuel Cell systems



### A glimpse at battery systems



### A glimpse at battery systems


| 4 A                                     |              | Z                 | AA         | AB                 | AC         |       | AD         | AE           | AF                       |    |
|-----------------------------------------|--------------|-------------------|------------|--------------------|------------|-------|------------|--------------|--------------------------|----|
| 2                                       |              |                   |            |                    |            |       |            |              |                          | Т  |
| 3                                       |              |                   |            |                    | För bussen |       | För bussen |              |                          |    |
| ID-nummer                               |              | 25                | 2          | 6                  | 27         | 28    | 29         | 30           | 3                        | 31 |
| 5 Kemi                                  | РЬ           | LTO               | LFMP       | LiFePO4            | LTO        |       | LTO        | LiFePO4      | LiFePO4                  | L  |
| Tillverkare                             | B.B.         | Altairnano        | Valence    | European Batteries | Altairnano |       | Altairnano | Lifebatt     | European Batteries       | Α  |
| 7 Leverantör                            | Electric Ric | Altairnano        | e-traction | European Batteries | Altairnano |       | Altairnano | Lifebatt     | Med extra 8-modul        | Α  |
| Produkt                                 | EVP20-12B    | 24 V 60 Ah Module | U1-12XP    | EBattery 20 16s1p  | 60 Ah      |       | 60 Ah      | XPS2E-108015 | EBattery 20 16s1p - 45Ah | 13 |
| Fakta om modul:                         |              |                   |            |                    |            |       |            |              |                          |    |
| Spänning (V)                            |              | 23                | 12,        | 8 5                | 1,2        | 22,6  | 22,6       | 118,8        | 51,2                     | 2  |
| Teoretisk kapacitet (Ah)                |              | 60                | 4          | 0                  | 45         | 60    | 60         | 15           | 45                       | 5  |
| 2 Användbar kapacitet (Ah)              |              | 60                | 3          | 2                  | 36         | 60    | 60         | 12           | 45                       | 5  |
| 3 Vikt (kg)                             |              | 28                | 6.         | 5                  | 21         | 27,4  | 27,4       | 23           | 2                        | 21 |
| 4 Max kont. urladdningsström (A)        |              | 360               | 8          | 0 .                | 35         | 360   | 360        | 45           | 135                      | 5  |
| 5 Pris(\$)                              |              | 3000              | 95         | 2 20               | 50         | 2140  | 2140       | 3000         | 2050                     | 0  |
| Uppgivet antal cykler, vår applikation  |              | 12000             | 300        | 0 30               | 00         | 16000 | 16000      | 2000         | 3000                     | 0  |
| 7 Celltyp                               | Prismatisk   | Bag               |            | Bag                | Bag        |       | Bag        |              | Bag                      |    |
| Antal celler i serie                    |              | 10                |            | 4                  | 16         | 10    | 10         | 36           | 16                       | 6  |
| Inre resistans (mOhm)                   |              | 4                 |            | 5                  | 32         | 4     | 4          | 100          | 32                       | 2  |
| ) Min spänning                          |              | 18                |            | 0                  | 40         | 17    | 17         | 72           | 40                       | 0  |
| 1 Max vilospänning                      |              | 28                | 14,        | 6 5                | .4         | 27,5  | 27.5       | 131.4        | 58,4                     | 4  |
| 2                                       |              |                   |            |                    |            | ,-    |            |              |                          |    |
| 3 Lämplig pack-konfiguration:           |              |                   |            |                    |            |       |            |              |                          |    |
| 4 Moduler per sträng                    |              | 2                 |            | 2                  | 3          | 17    | 17         | 2            | 4,5                      | 5  |
| 5 Antal strängar                        |              | 1                 |            | 1                  | 1          | 2     | 3          | 2            |                          | 1  |
| 6 Kostnad för montering/balanserare/etc |              | 1900              | 60         | 0 1                | 50         | 6595  | 9570       | 4650         | 1150                     | 0  |
| 7                                       |              |                   |            |                    |            |       |            |              |                          |    |
| 8 Uträknade data (modul)                |              |                   |            |                    |            |       |            |              |                          |    |
| 9 C-värde urladdning                    |              | 6                 |            | 2                  | 3          | 6     | 6          | 3            | 3                        | 3  |
| D Teoretisk energi per modul (Wh)       |              | 1380              |            |                    |            | 1356  | 1356       | -            |                          |    |
| 1 Användbar energi per modul (Wh)       |              | 1380              |            |                    |            | 1356  | 1356       |              |                          |    |
| 2 Teoretisk energidensitet (Wh/kg)      |              | 49                |            |                    | 10         | 49    |            |              |                          |    |
| B Cellspänning vid minspänning          |              | 1,8               |            |                    | .5         | 1,7   |            |              |                          |    |
| 4                                       |              | ,,,               |            |                    | ,,0        |       | 1,1        |              | 2,0                      | Í  |
| 5 Uträknade data (pack)                 |              |                   |            |                    |            |       |            |              |                          |    |
| 6 Max kont. urladdningsström (A)        |              | 360               |            | 0 -                | 35         | 720   | 1080       | 90           | 135                      |    |

### A glimpse at Fuel Cell systems

| Fuel cell System compariso            | on                           |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
|---------------------------------------|------------------------------|-----------|-----------------|-----------------|------------------|-----------|-----------------------|------------------|------------------|-----------|----------------------|-------------|---------|-----------|-------------|----|
|                                       | Hudrogenics                  |           |                 | Powercell       |                  |           |                       | HuMove           |                  |           |                      | ProtonMotor |         |           |             |    |
|                                       | 1                            | 5         | 10              | 25              | 1                | 5         | 10                    | 25               | 1                | 5         | 10                   | 25          | 1       | 5         | 10          | 25 |
|                                       |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| System Name                           |                              | HyPN      | 1 HD30          |                 | M                | 15-30 wit | h S2 sta              | ck               |                  | 3 stack   | s system             |             |         | HyRa      | nge 38      |    |
| Budget fuel cell Range Extende        | :F                           |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| System cost from supplier             |                              |           | <b>1</b> 52 000 |                 | <b>1</b> 160 000 |           |                       | <b>1</b> 100 000 | <b> </b> 100 000 |           |                      |             |         |           |             |    |
| Additional hardware costs             | <b>1</b> 15 000              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Development costs                     | 35 000                       |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Maintenance                           |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Service costs                         |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Performance                           |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Sustem Power (now 30 kW max)          |                              | 31        | kW              |                 |                  | 32        | kW                    |                  |                  | 33        | kW                   |             |         | 37 -      | 4 kW        |    |
| System and stack predicted lifetime   |                              |           | .000            |                 |                  |           | 000                   |                  |                  |           | 000                  |             |         |           | 0.000       |    |
| Voltage range                         | 60-120                       |           |                 | 135-264         |                  |           |                       | 140-270          |                  |           |                      | 75-137      |         |           |             |    |
| Amps range                            | 0-500                        |           |                 | 0-240           |                  |           | 0-240                 |                  |                  |           | 0-500                |             |         |           |             |    |
| Weight                                |                              |           | ka              |                 |                  |           | i ka                  |                  |                  |           | 0 ka                 |             |         |           |             |    |
| Size (Ixbxh)                          | 720*406*261                  |           |                 | 451*641*656     |                  |           |                       |                  |                  | 520*643   |                      |             |         |           |             |    |
| Ambiant temp range (running)          | - 10arC - +46arC             |           |                 | -20arC - +50arC |                  |           |                       | - 20grC - +40grC |                  |           |                      |             | - 45arC | - +60arC  |             |    |
| Minimum startup temperature           | 2arC                         |           |                 | not clear       |                  |           | 2grC                  |                  |                  |           |                      |             |         |           |             |    |
| Minimum storage temperature           | -40arC                       |           |                 | not clear       |                  |           | - 20 arC (-40 arC ??) |                  |                  |           |                      |             |         |           |             |    |
| subzero startup?                      | keep warm/pre-heat           |           |                 | partly          |                  |           | keep warm/pre-heat    |                  |                  |           |                      |             |         |           |             |    |
| Blow out system (for below zero use)? |                              |           |                 | not clear       |                  |           | at shutdown           |                  |                  |           |                      |             |         |           |             |    |
| Sound level                           | you for subserio storage:    |           |                 | < 80 dBA        |                  |           | <70 dBA (estimation)  |                  |                  |           |                      |             |         |           |             |    |
| Cell plate material                   | Carbon polymer               |           |                 | Metall          |                  |           | Carbon polymer        |                  |                  |           | Carbon polymer       |             |         |           |             |    |
| Con prato material                    |                              | Odi Doi i | polymor         |                 |                  | 1110      | X GIII                |                  |                  | Carbon    | porymor              |             |         | Carbon    | рогуппог    |    |
| Operational parameters                |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Fuel consumption at different power ( |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Temperature of cooling water          | 5                            | 0-70 grC  | coolant ou      | ut              | m                | ax 70grC  | Coolant               | in               |                  | 65-70 gr  | C internal           |             |         |           |             |    |
| Interfacing                           |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Hydrogen supply pressure              |                              |           | ,3 barg         |                 |                  |           | parg                  |                  |                  |           | l barg               |             |         |           | 8 barg      |    |
| Hydrogen quality                      | 4.0 CO< 0,2ppm               |           |                 | >3.5            |                  |           | 5.0                   |                  |                  |           | ISO 14687-2 SAEJ2719 |             |         |           |             |    |
| CAN-bus interface for monitoring and  |                              |           | I 2.0A          |                 |                  |           | AN                    |                  |                  |           | 0 or J1939           |             |         |           |             |    |
| System supply voltage                 |                              |           | r 24V           |                 |                  |           | 4V                    |                  |                  |           | 4V                   |             |         |           |             |    |
| System supply watts                   | 30W (system) + 60W (airpump) |           |                 | 500W            |                  |           | ca 800W               |                  |                  |           |                      |             |         |           |             |    |
| Airpump supply                        |                              | From      | system          |                 | max              |           | 00V-440\              | /DC              |                  |           | kW HV                |             |         |           |             |    |
| IP class                              |                              |           |                 |                 |                  | IF        | 54                    |                  | depe             | ending or | n housing            | IP67        |         | IF        | P66         |    |
| Powerelectronics                      |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Recommended DC/DC                     |                              |           | Amps.           |                 |                  | 18000     | Visedo                |                  | <b>I</b> 8000    | (Visedo,  | max 405 a            | amps)       |         |           |             |    |
| Size, weight and cost of DC/DC        | <b>J</b> 350                 | 000 (Hydr | ogenics 2       | 014)            | 1                | 10000 Ta  | me Powe               | er               |                  |           |                      |             |         |           |             |    |
| _                                     |                              |           | max 405 a       |                 |                  |           |                       |                  |                  |           |                      |             |         |           |             |    |
| Conformity                            |                              |           |                 |                 |                  |           |                       |                  |                  |           |                      |             |         | PE 701200 | 09, R10, R1 | nn |



### Our solution for a FC-E-BE-Truck: One basic chassis





## Our solution for a FC-E-BE-Truck: One basic chassis with customer adapted energy storage:





# Our solution for a FC-E-BE-Truck: One basic chassis with customer adapted energy storage: Different battery systems





## Our solution for a FC-E-BE-Truck: One basic chassis with customer adapted energy storage:

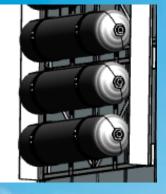
Different battery systems

**Different Fuel Cell systems** 



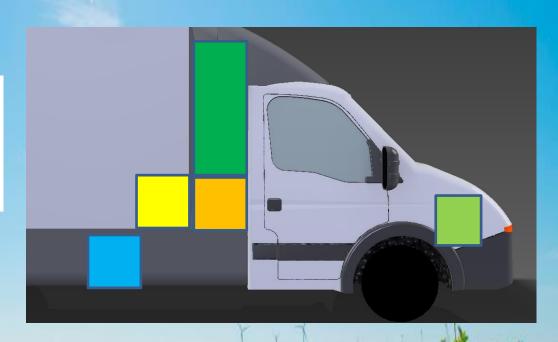


#### The FC-E-BE-Truck trick

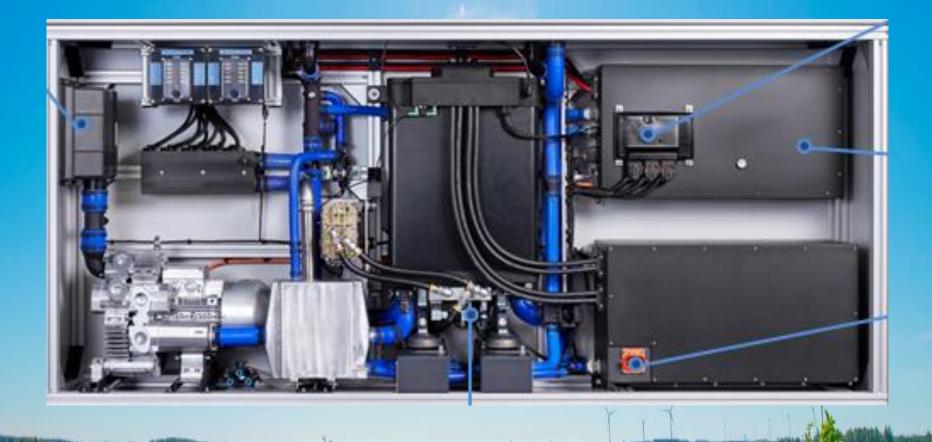

Is all about weight distribution



### RW BOUSTBURTION

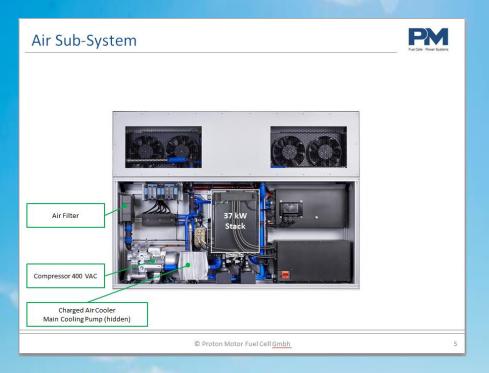


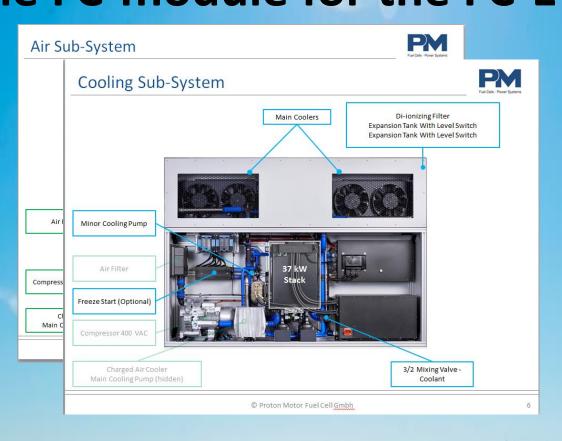

### The solution for our FC-E-BE-Truck Is 3D RL TETRIS



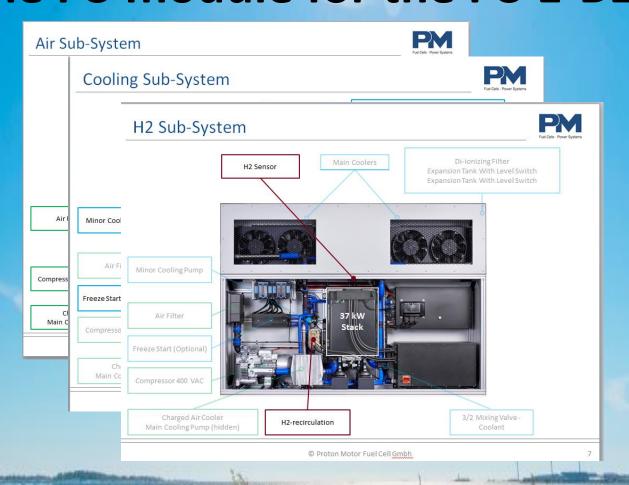


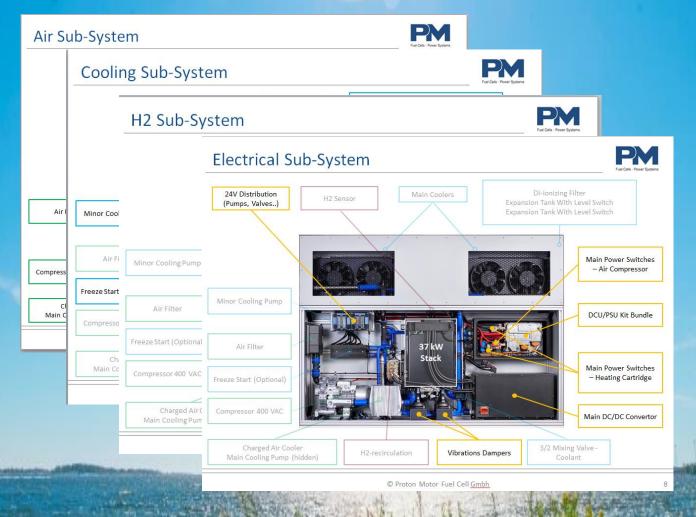






### BW KONSTRUKTION


### (IIC)





### TW MODSTAUMTION







### **Besides the FC-module**

we need



### The H<sub>2</sub> tanks for the FC-E-BE-Truck



And:





### The H<sub>2</sub> tanks for the FC-E-BE-Truck



And:



Different battery modules



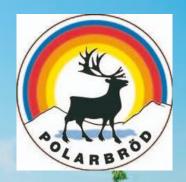
### **Summary:**

#### We now know how to build these trucks








### **Summary:**

We now know how to build these trucks

We have the potential customers

martin& servera

**SVEVIA** 







### **Summary:**

We now know how to build these trucks

We have the potential customers

We even have the hydrogen!







### **Summary:**

We now know how to build these trucks

We have the potential customers

We even have the hydrogen!



**But:** 





### **Summary:**

We now lack financing. . .





### Do you want to partner up?

### Thank you for your attention

**Boh Westerlund** 

**BW Konstruktion AB** 

bwk@telia.com

1905