

Sicherheit in Technik und Chemie

Nov 27, 2019

# Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction Anja Kömmling, Matthias Jaunich, Dietmar Wolff

Polymers in Nuclear Applications 2019 Helsinki, Finland

www.bam.de

#### BAM is involved in the current licensing procedures for storage (and transport) casks for nuclear waste

- Extending interim storage of radioactive waste containers will be necessary due to delays in the final repository projects in Germany
- Safety of casks will have to be evaluated with regard to extended storage periods can the components retain their functionality for several more decades?
- BAM has started several test programs for
  - evaluating long-term safety of components
  - developing suitable methods for accelerated aging, lifetime prediction and modelling
- With focus on

Role of BAM

metal and elastomer seals

**Background/Motivation** 

- > polyethylene neutron shielding materials
- brittle failure of spent fuel claddings







#### **Function of elastomer seals** for safety of casks for radioactive waste





- Elastomer seals are used as main seals or auxiliary seals depending on the cask type
- Complex lid system of the casks
- Risk of exposure when opened
- Seals cannot be exchanged easily
- They need to maintain leak tightness for extended storage periods (will be more than 40 years in Germany)
- Aging investigations and lifetime predictions are needed

#### Nov 27, 2019 Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction

### Aging program

# Materials – Elastomers for sealing applications

#### HNBR

- Hydrogenated Acrylonitrile Butadiene rubber
- Oil resistant

#### **EPDM**

- Ethylene Propylene Diene rubber
- Low Tg, water resistant

#### FKM

- Fluorocarbon rubber
- High chemical and heat resistance









### Aging program – O-rings uncompressed – compressed – in flanges



Uncompressed on punched sheets on a rack



Compressed by 25% between plates



Compressed in flanges for leakage rate measurements





### Aging program Sheets (2 mm) and standard specimen















Start: May 2014

Ageing times:

1 d 3 d 10 d 30 d 100 d 0.5 a 1 a 1.5 a 2 a 2.5 a 3 a 3.7 a 4.3 a 5 a

Ageing temperatures:

150°C, 125°C, 100°C, 75° C (additionally for compression set: 60°C, 23°C)



EPDM O-Ring after ageing for 1 year at 150°C

## **Aging program** Analysis

#### Material properties

- Tensile Tests
- Hardness
- Density
- DMA
- Mass loss
- TGA
- Relaxation and Recovery behaviour
- IR spectroscopy
- Kinetic analysis
- ...



#### Seal properties

- Compression Set
- Compression Stress Relaxation
- Leakage rate





- Analysis of material property changes during aging and investigation of the respective degradation processes
- Determination of a suitable end-of-lifetime criterion for seals
- Reliable lifetime prediction

HNBR O-ring after 1 year at 150°C



# **Results** EPDM (sheets)





- Hardness and density increase → crosslinking and/or oxygen insertion through chain scission (increase of polarity and intermolecular attraction, heavy O-atoms)
- Decrease of both elongation at break and tensile strength
- Both crosslinking and chain scissions are relevant degradation processes

#### Method

# Compression Set (CS)

- Samples are aged compressed by 25%
- After release, some time is allowed for recovery
- CS is calculated from remaining deformation



initial height  

$$CS = 100\% \frac{(h_0 - h_2)}{(h_0 - h_1)} \leftarrow \text{compressed height}$$

$$CS = 100\% \implies \text{no recovery}$$

$$CS = 0\% \implies \text{full recovery}$$



#### Method

# Compression Set (CS)

- Samples are aged compressed by 25%
- After release, some time is allowed for recovery
- CS is calculated from remaining deformation



initial height recovered height  

$$CS = 100\% \frac{(h_0 - h_2)}{(h_0 - h_1)} \leftarrow \text{compressed height}$$

$$CS = 100\% \implies \text{po recovery}$$

 $CS = 100\% \implies$  no recovery

 $CS = 0\% \implies$  full recovery

#### Compression set after 101 days of ageing



Nov 27, 2019 Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction

#### Method

# Compression Set (CS)

- Samples are aged compressed by 25%
- After release, some time is allowed for recovery
- CS is calculated from remaining deformation



 $CS = 0\% \implies$  full recovery

However, CS values depend on recovery time after release:

- 30 min according to standards ASTM D395 and DIN ISO 815-1
- ~ 5 days in previous experiments
- after tempering (1 d at 100°C) to be close to the equilibrium value
- For the application, short times after release are often more relevant, but for comparing material degradation, equilibrium values are more meaningful



### **Results** EPDM – CS





### **Results** EPDM – CS





### Results EPDM





- CS increases much faster than e.g. hardness and density
- Explanation: Hardness/density shows only the net effect of the influence of crosslinking and chain scission, while CS increases additively through both reaction types
- Property changes are measurable much faster

### **Results** EPDM – CS – TTS





- As compression set is more sensitive to degradation and related to the sealing function, it is chosen as the property for lifetime prediction using TTS
- TTS allows shifting data measured at higher temperatures to lower temperatures
- Lifetime at 75°C is 450 times longer than at 150°C
- For lifetime predictions, we need an end-of-lifetime criterion



#### Determination of end-of-lifetime criterion

- End of the lifetime should be correlated to leakage as the point of seal failure
- Under static conditions, the leakage rate hardly changes and
   O-rings can remain leak tight down to almost zero sealing force
- A modified, more demanding leakage test involving a fast small partial decompression of the seal was developed





#### **Results** Determination of end-of-lifetime criterion

- End of the lifetime should be correlated to leakage as the point of seal failure
- Under static conditions, the leakage rate hardly changes and O-rings can remain leak tight down to almost zero sealing force
- A modified, more demanding leakage test involving a fast small partial decompression of the seal was developed







#### Results



### Determination of lifetime criterion for EPDM O-Ring



- Under static conditions, the seal remained leak tight for up to 101 d at 150°C
- During the fast partial decompression, the seal remained leaktight for up to 70 d, but became untight after 101 d ageing time at 150°C during the partial decompression
- > Seal lifetime lies somewhere between 70 und 101 d
- During a second experiment, this range could be narrowed to 70-80 d
- The lifetime is conservatively assumed as 70 d

Nov 27, 2019 Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction

#### **Results**

# Lifetime of EPDM O-Ring and general criterion

- Using the shift factors from TTS, the lifetime can be calculated for the other temperatures
- 70 d at 150°C corresponds to 84% CS (in equilibrium)
- An EPDM O-ring aged at 125°C remained leaktight in the leakage test with the partial decompression for up to 278 d
- This corresponds to 86% CS
- 80-85% CS could be a general end-of-lifetime criterion (for non-lubricated seals), however, this has to be verified for other materials

| Temp. | a <sub>T</sub> | Lifetime |
|-------|----------------|----------|
| 150°C | 1              | 70 d     |
| 125°C | 5              | 350 d    |
| 100°C | 45             | 8.6 a    |
| 75°C  | 450            | 86 a     |



# **Results** HNBR (sheets)





- Hardness and density increase
- Decrease of elongation at break, increase of tensile strength
- Embrittlement due to dominant crosslinking reactions

# **Results** HNBR (O-rings) – CS







Cut cross-section of HNBR O-ring aged for 100 days at 150°C

• Clearly distorted results for 150°C due to pronounced DLO effects



### **Results** HNBR (O-rings) – DLO effects



- Clearly distorted results for 150°C due to pronounced DLO effects
- Slight DLO effects at 125°C
- No DLO effects at 100°C (and below)

# **Results** HNBR (O-rings) – CS - TTS





- No superposition for 150°C values with pronounced DLO effects
- Exclusion of 150°C and 125°C from fit for Arrhenius line
- 85% CS is reached after 585 d/1.6 a at 100°C
- Using the shift factors, this corresponds to 10.7 a and 42.7 a at 75°C and 60°C

### **Results** FKM (sheets)





• Hardly any changes visible with these methods due to the high stability of FKM

# **Results** FKM (O-rings) – CS - TTS





- Stronger degradation visible for CS, perhaps due to cage effect
- Highest reached CS after 5 years is 72%
- Using TTS/shift factors, 72% would be reached after 600 years at 75°C
- Note: E<sub>A</sub> of FKM is the lowest, but lifetime is the highest
- $\succ$  E<sub>A</sub> is a measure for the spread between the temperatures, but not for stability

#### Conclusions



- Crosslinking and chain scission are relevant degradation mechanisms for EPDM, for HNBR it is mainly crosslinking
- DLO effects distort aging data of HNBR at 150°C and (less) at 125°C
- Compression set shows more pronounced degradation than other methods
- Additionally, CS is related to the sealing force/function
- Lifetime predictions should be performed using (equilibrium) CS data
- Time-temperature superposition is a suitable method for extrapolation
- End-of-lifetime criterion was determined using a modified leakage test involving a small fast partial decompression of the seal
- Using this test, EPDM seals remained fully functional for up to 70 d at 150°C and 278 d at 125°C (corresponds to 84% and 86% CS)
- Lifetime at 75°C was about 86 years (EPDM), 11 years (HNBR) and 600 years (FKM, for 72% CS)
- Activation energy is not a direct indicator of the oxidative stability

#### **Publications**



- <u>Analysis of O-Ring Seal Failure under Static Conditions and Determination of End-of-Lifetime Criterion</u>, A. Kömmling, M. Jaunich, P. Pourmand, D. Wolff, M. Hedenqvist, Polymers 11(8) (2019) 1251
- Influence of Ageing on Sealability of Elastomeric O-rings, A. Kömmling, M. Jaunich,
   P. Pourmand, D. Wolff, U. Gedde, Macromolecular Symposia 373 (1) (2017)
- <u>Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals</u>,
   A. Kömmling, M. Jaunich, D. Wolff, Polym. Degrad. Stab., 126 (**2016**) 39-46
- <u>Revealing effects of chain scission during ageing of EPDM rubber using relaxation</u> <u>and recovery experiment</u>, A. Kömmling, M. Jaunich, D. Wolff, Polymer Testing 56 (2016) p. 261-268.
- <u>Scission, Cross-Linking, and Physical Relaxation during Thermal Degradation of Elastomers</u>, M. Zaghdoudi, A. Kömmling, M. Jaunich, D. Wolff, Polymers 11(8) (2019) 1280

#### The End





Nov 27, 2019 Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction