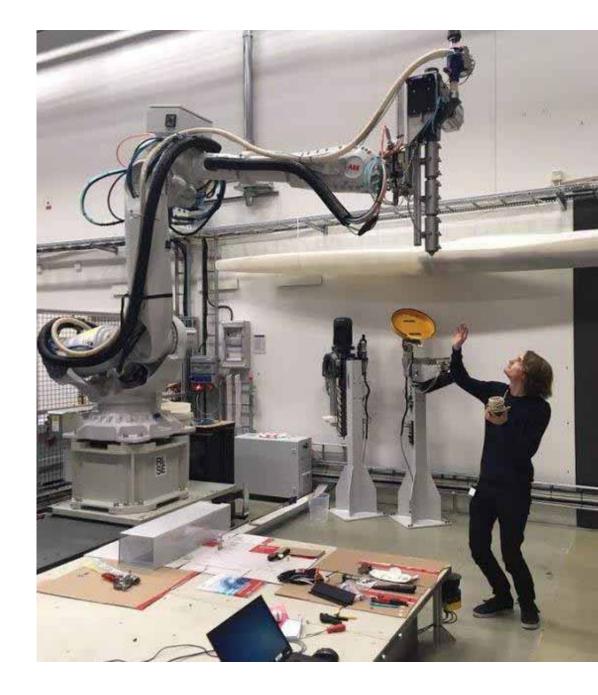
Additive Manufacturing of Flexible Polymers

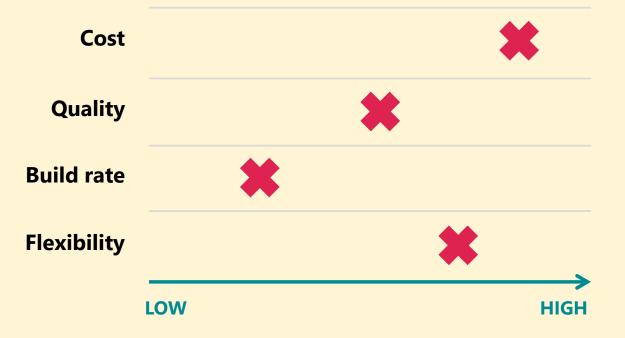
Emil Johansson Additive Manufacturing, RISE emil.johansson@ri.se

This presentation

Where is additive manufacturing today?


2 Additive manufacturing of flexible materials

Who am I?


Worked in the AM group at RISE for the last five years.

I work with process development for **novel AM technologies** and particularly using robotics and AM together.

Where is additive manufacturing today?

3D printing has come a long way since its origins in the mid 1980s. However, there are still many challenges to overcome, such as rightfirst-time capabilities, material availability and process robustness.

Additive manufacturing (AM) is a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies.

Other terms used are 3D-printing, rapid prototyping, free form fabrication and direct manufacturing.

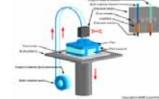
Why additive manufacturing?

Advantages

- 1 Design freedom
- 2 Short lead times
- 3 Reduced material waste
- 4 Single step manufacturing
- 5 Low cost for small series
- 6 Design customization

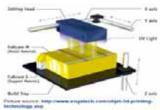
Rapid prototyping

Rapid tooling

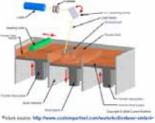

Rapid manufacturing

Part repair

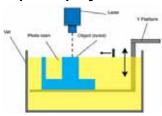
Part consolidation


Additive Manufacturing: 7 Categories of Technologies

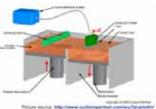
Material extrusion


Material is selectively dispensed through a nozzle or orifice.

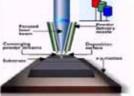
Material jetting


Droplets of build material are selectively deposite.

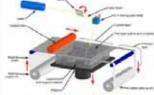
Powder bed fusion


Thermal energy selectively fuses regions of a powder bed.

VAT photo polymerization


Liquid photopolymer in a vat is selectively cured by light-activated polymerization.

Binder jetting

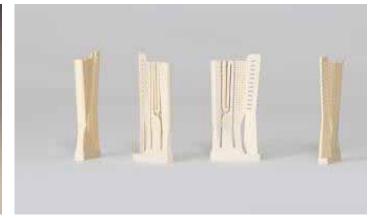

Liquid bonding agent is selectively deposited to join powder material.

Directed energy deposition

Focused thermal energy is used to fuse materials by melting as the material is being deposited.

Sheet lamination

Sheets of material bonded to form an object.

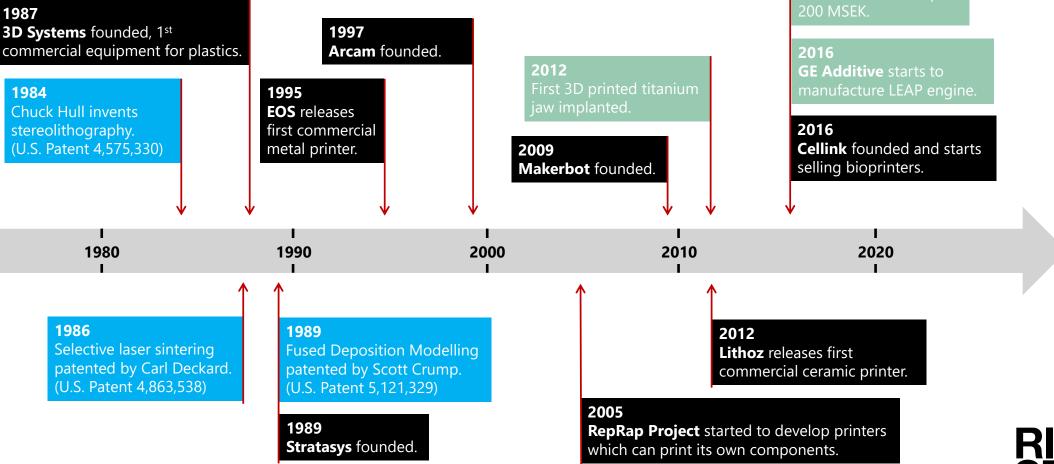


01. 3D-printed Aston Martin for Skyfall

03. Ceramic cores for investment casting (Lithoz)

04. Impossible faucet by American Standard

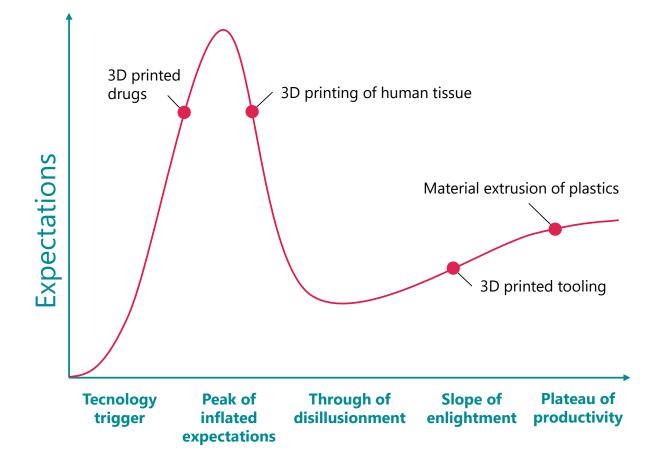
05. 3D-printed turbine blades by Siemens



06. 3D-printed hearing aids

8 Additive Manufacturing of Flexible Polymers

A Brief Timeline of Additive Manufacturing


9 CIU176 - Prototyping in interaction design

RI. SE

2016

Gartner Technology Curve for AM

Predicting the adoption of new technologies such as additive manufacturing.

Common applications

Tooling

Lightweight parts

Improved functionality

Flexible Materials

- Historically both limited material availability and limited performance
- Several recent business cases with high volume production

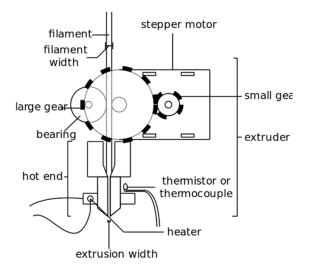
AM Technologies for Flexible Materials

Thermoplastic elastomers

Material extrusion, powder bed fusion

Thermoset/crosslinked elastomers

Material jetting, vat photo-polymerization



Material Extrusion

- Extrusion of thermoplastic polyurethanes or thermoplastic copolyesters
- Hardness: Shore 70A 95A
- Feature resolution of 100-150 μm

Material Extrusion

+ Low start-up cost

- + Multi-material parts possible
- Extrusion failure (buckling, backflow)
- Interlayer adhesion issues (insufficient time for wetting and chain entanglement)
- Low process robustness
- Complex geometries difficult

Material Behaviour and Properties

- Printability decrease with decreasing hardness
- Hygroscopic
- Retraction difficult

Name	Manufacturer	Туре	Tensile Strength [MPa]	Elongatio n at break [%]	Shore A Hardness
NinjaFlex	NinjaTek	TPU	4	660	85
Cheetah	NinjaTek	TPU	9	580	95
FDM TPU 92A	Stratasys	TPU	16.8 - 17.4	550	92
Filaflex	Recreus	TPU- TPE	45	600	82
Filaflex Ultrasoft	Recreus	TPU- TPE	32	900	70

Material Jetting

- Deposition of droplets of photocurable material by a print head
- UV light cures the material
- Polyjet from Stratasys and Multi-jet from 3DSystems
- Allows multifunctional parts

Agilus30 Polyjet Material https://www.stratasys.com/materials/search/agilus30

Material Jetting

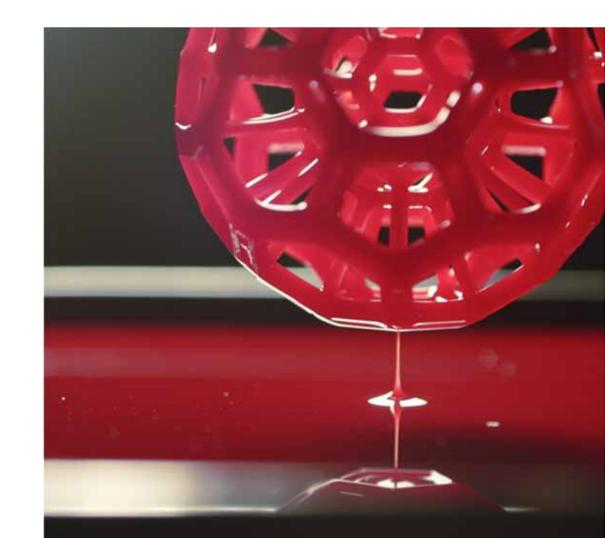
- + High resolution (20 μ m 70 μ m)
- + Multi-material possible
- + Graded material possible
- Low viscosity required for jetting -> dilution
- Allergenic resins
- High start-up and material cost

Material Behaviour and Properties

- Relatively low
 performance
- High resolution
- Very soft materials available

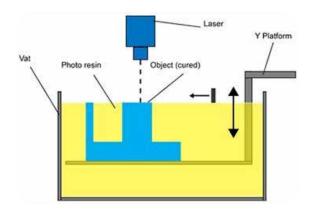
Name	Manufacturer	Tensile Strength [MPa]	Elongation at break [%]	Shore A Hardness
Visijet CE- NT	3DSystems	0.2-0.4	160-230	-
FLX9840	Stratasys	1.3-1.8	110-130	35-40
FLX9860	Stratasys	2.5-4.0	75-85	57-63
FLX9895	Stratasys	8.5-10.0	35-45	92-95
Agilus30	Stratasys	2.4-3.1	220-270	30-35

Vat Photopolymerization


- Photopolymerization of resin ٠
- High resolution possible •
- Thermoset elastomers •

CLIP technology

- Released April 1, 2016
- Digital light projection for photocuring
- Oxygen permeable
 membrane
- Continous printing without layered structure



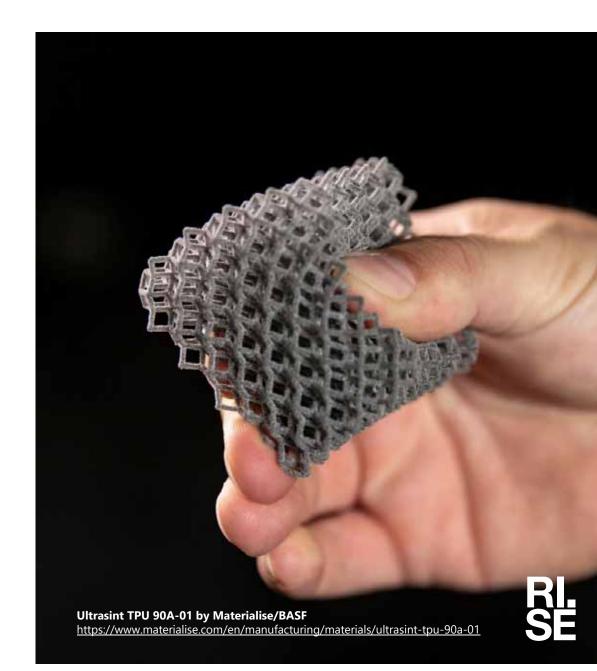
CLIP technology

https://3dprintingindustry.com/news/adidas-to-release-a-new-version-of-3dprinted-shoe-alphaedge-4d-155578/

Vat Photopolymerization

- + High resolution (10 µm 100 µm lateral)
- + Complex designs possible
- Not possible with multi-material
- Low to moderate viscosity resins possible
- Allergenic materials
- Moderate to high start-up cost
- High material cost

Material Behaviour and Properties


- Relatively low
 performance
- High resolution
- Very soft materials available

Name	Manufacturer	Tensile Strength [MPa]	Elongation at break [%]	Shore A Hardness				
Elastic (green)	Formlabs	1.61	100	40				
Elastic (post- cured)	Formlabs	3.23	160	50				
Flexible (green)	Formlabs	3.3-3.4	60	70-75				
Flexible (post-cured)	Formlabs	7.7-8.5	75-85	80-85				
EPU 40	Carbon3D	7.7	>250	68				

Powder Bed Fusion

- Powder is selectively joined together by heating with a laser
- Moderate resolution
- 0,1 millimetres layer thickness
- Heated chamber with inert gas required

Material Behaviour and Properties

- Moderately soft materials
- Rubber-like parts
- Non-slip surfaces

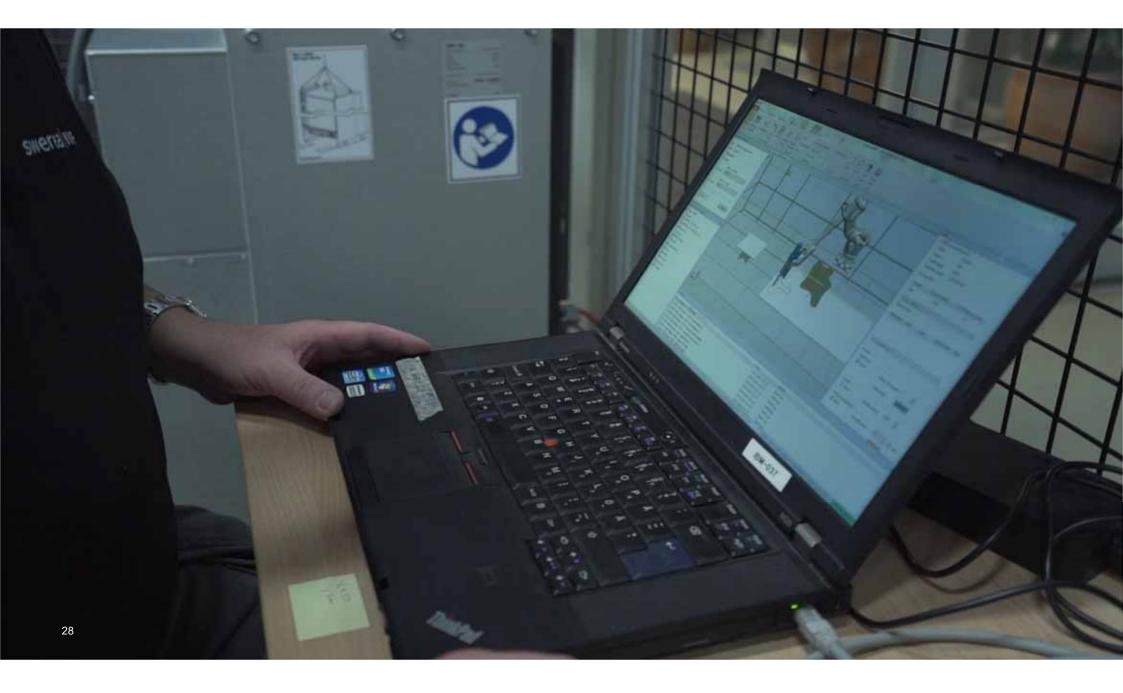
Name	Manufacturer	Tensile Strength [MPa]	Elongation at break [%]	Shore A Hardness
DuraForm TPU	3D Systems	2.1	200	59
Ultrasint TPU 90A-01	Materialise/BAS F	8-8.5 (xy) 5-6.5 (z)	260-330 (xy) 50-100(z)	88-90
LUVOSINT X92A-1	Lehmann & Voss & CO	20 (xy) 15 (z)	520 (xy) 500 (z)	88
Windform RL	Windform	5.0	383	83

Energica motorbike 3D printed soft seat in Windform RL using SLS. (http://www.windform.com/windform-rl.html)

3D printed collection by Dutch designer Iris van Herpen. Printed using SLS by Materialise. (https://www.materialise.com/en/cases/iris-van-herpen-debutswearable-3d-printed-pieces-at-paris-fashion-week)

Adidas FUTURECRAFT 4D shoe. Printed using CLIP.

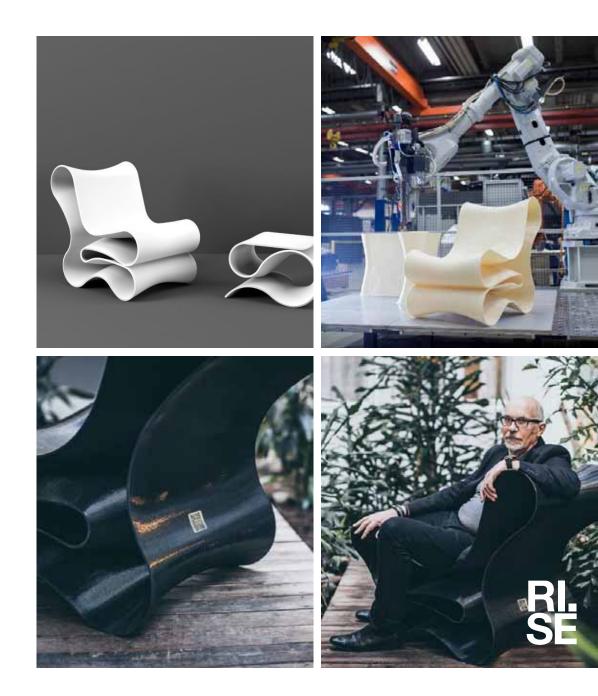
(https://3dprintingindustry.com/news/adidas-torelease-a-new-version-of-3d-printed-shoealphaedge-4d-155578/)



Flexible manufacturing based on robotics

Use of industrial robotics to enable flexible manufacturing through:

- Scalability
- Tool changers
- Hybrid manufacturing
- Inline quality assurance
- Collaborative robot cell


INDUSTRIAL USE CASE Personalized furniture on demand at RISE

Companies

 Svenska Woody AB and startup Sculptur AB

Results

- Pre-industrialization tests successful in recycled materials
- Company is ready to go into full production.

Conclusion

- Growing interest with new applications
- Challenging to process due to inherent material properties
- AM technology has to selected on a case by case basis
- Materials which are tailored specifically for AM required
- Complex designs can provide elasticity with variations in density
- Granulate feedstock materials unlocks new possibilities

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×E	İmi	IJ	oĥa	nš	SŎI	n×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		× ioha		× on <i>@</i>) Vri s	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×0	31 7	06 (on@ 61 [°] 5	4 [×]	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Research Institutes of Sweden AB · 010-516 50 00 · info@ri.se · ri.se Besöksadress: Lindholmspiren 7 A, 417 56 Göteborg · Postadress: Box 857, 501 15 Borås

