KTH ROYAL INSTITUTE OF TECHNOLOGY

Applications of machine learning for safe spillway discharge

Shicheng Li & James Yang Department of Civil and Architectural Engineering KTH Royal Institute of Technology

Contents

- Introduction
- Research methods
- Example 1: Discharge determination
- Example 2: Aeration estimation
- Summary and future work

Introduction

Background: hydropower

- Renewable energy source
- Increased design flood: overtopping, cavitation, etc.
- Discharge determination
- Aeration estimation

Introduction

Comparison of the old and new design floods: 20-50% increase

No.	River name	Dam name	Z (m)	Q _o (m³/s)	∆ (%)
1		Ajaure	45	950	40
2	Umeälv	Stornorrfors	20	3300	35
3		Rusfors	22	1625	27
4	Indoloälvon	Midskog	27	2300	35
5	muaisaiven	Bergeforsen	29	2300	45
6	Ångormonälvon	Stenkullafors	30	1250	40
7	Angermanaiven	Edensforsen	19	1400	>40
8	Skellefte älv	Gallejaur	55	700	20
9	Klarälven	Höljes	80	1600	>25
10	Liuopop	Långströmmen	28	1670	50
11	Ljushan	Halvfari	43	650	100
12		Letsi	85	1500	25
13	Lulo ölv	Porsi	40	2700	15
14	LUIC AIV	Vittjärv	15	2200	50
15		Boden	21	2800	20

Research methods

Conventional approaches

- Experimental test
- Numerical study (CFD)
- Field observation

Research methods

Alternative method

Machine learning

Advantages

- Map feature data to labels
- Easily identifies trends and patterns
- Handling multi-dimensional and multi-variety data
- Continuous improvement
- Data acquisition

(a)

(b)

	D (cm)	P (cm)	d (cm)	h (cm)
Test 1 (Aydin et al. 2002)	30.0	4.0-16.0	0.5-7.5	2.1-27.9
Test 2 (Gharahjeh et al. 2015)	32.0	8.0	10.0-32.0	1.0-54.0

* Li, S., Yang, J., & Ansell, A. (2021). Discharge prediction for rectangular sharp-crested weirs by machine learning techniques. *Flow Measurement and Instrumentation*, 79, 101931.

Artificial neural network

$$o_j = \sum_{i=1}^n \beta_i f_a (w_i x_j + b_i) \quad j = 1, 2, ..., N$$

Extreme learning machine

- One hidden layer
- Randomly assigned weights in the input layer and analytically solved in the output layer
- Reduced risks of overfitting

Support vector machine

Establish an optimal hyper-plane that separates two classes of samples with the largest margin

Performance criteria

Coefficient of determination (CD) Correlation coefficient (CC) Root mean square error (RMSE) Mean absolute error (MAE)

$$CD = \left(\frac{\sum_{i=1}^{N} \left(O_{i} - \overline{O}_{i}\right)\left(S_{i} - \overline{S}_{i}\right)}{\sqrt{\sum_{i=1}^{N} \left(O_{i} - \overline{O}_{i}\right)^{2}}\sqrt{\sum_{i=1}^{N} \left(S_{i} - \overline{S}_{i}\right)^{2}}}\right)^{2}$$

$$CC = \frac{\sum_{i=1}^{N} (O_i - \overline{O}_i) (S_i - \overline{S}_i)}{\sqrt{\sum_{i=1}^{N} (O_i - \overline{O}_i)^2 \sum_{i=1}^{N} (S_i - \overline{S}_i)^2}}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (O_i - S_i)^2}{N}}$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} \left| O_i - S_i \right|$$

Theoretical analysis

 $Q = F(h, d, D, P, \rho, g, \mu, \sigma)$

$$\Pi_{1} = F_{1} \left(\Pi_{2}, \Pi_{3}, \Pi_{4}, \Pi_{5}, \Pi_{6} \right)^{\gamma}$$
$$\Pi_{1} = \frac{Q}{\rho^{\alpha 1} g^{\beta 1} h^{\chi 1}}$$
$$\Pi_{2} = \frac{P}{\rho^{\alpha 2} g^{\beta 2} h^{\chi 2}}$$
$$\Pi_{3} = \frac{d}{\rho^{\alpha 3} g^{\beta 3} h^{\chi 3}}$$
$$\Pi_{4} = \frac{D}{\rho^{\alpha 4} g^{\beta 4} h^{\chi 4}}$$
$$\Pi_{5} = \frac{\mu}{\rho^{\alpha 5} g^{\beta 5} h^{\chi 5}}$$
$$\Pi_{6} = \frac{\sigma}{\rho^{\alpha 6} g^{\beta 6} h^{\chi 6}}$$

$$\begin{aligned} \Pi_{1^*} &= \Pi_1 / \Pi_3, \ \Pi_{2^*} &= 1 / \Pi_2, \ \Pi_{3^*} &= \Pi_3 / \Pi_2, \\ \Pi_{4^*} &= \Pi_3 / \Pi_4, \ \Pi_{5^*} &= \Pi_3 / \Pi_5, \ \Pi_{6^*} &= (\Pi_2)^3 / \Pi_6 \end{aligned}$$

$$C_d = \frac{Q}{d\sqrt{gh^3}} = F_2\left(\frac{h}{P}, \frac{d}{P}, \frac{d}{D}, \mathsf{R}, \mathsf{W}\right)$$

 $R = \rho d(gh)^{0.5}/\mu = \text{weir Reynolds number},$ $W = \rho g d^2/\sigma = \text{Weber number}$

Input vectors

Input No.	Dimensionless parameters	Input No.	Dimensionless parameters
M1	h/D	M6	h/P, d/P, R
M2	d/P	M7	d/P, d/D, W
M3	h/P, d/D	M8	h/P, d/P, d/D, R
M4	d/P, R	M9	h/P, d/D, R, W
M5	h/P, d/P, d/D	M10	h/P, d/P, d/D, R, W

Optimal input: h/P, d/P, d/D, R (M8)

	CD	CC	RMSE	MAE
ANN	0.9441	0.9716	0.0093	0.0066
SVM	0.9474	0.9734	0.0090	0.0063
ELM	0.9171	0.9577	0.0112	0.0085

Comparison with empirical models: statistics performance

- Only a few empirical models give satisfactory predictions
- Machine learning models are the most accurate: mean error < 1.35%

Method	Max. IREI	Mean IREI	Method	Max. IREI	Mean IREI	
	(%)	(%)		(%)	(%)	
Eq. 16	12.09	5.60	Eq. 24	13.48	6.53	
Eq. 18	252.35	10.00	Eq. 25	13.16	6.13	
Eq. 19	333.55	36.03	Eq. 26	11.02	1.74	
Eq. 20	71.58	13.82	ANN	7.38	1.06	
Eq. 21	24.14	8.85	SVM	5.44	0.99	
Eq. 22	17.04	6.86	ELM	7.10	1.35	
Eq. 23	22.12	7.04	-	-	-	

KTH KCH

Example 1: Discharge determination

Comparison with empirical models: cumulative frequency

- AI models: 99% of predicted data show a IREI < 5%
- Al models outperform all the empirical correlations

* Li, S., Yang, J., & Liu, W. (2021). Estimation of aerator air demand by an embedded multi-gene genetic programming. *Journal of Hydroinformatics*, 23 (5): 1000–1013 .

Multi-gene genetic programming

- Evolutionary based method
- Linear combination of low-depth GP trees

 $T = c_1 G_1 + c_2 G_2 + \dots + c_n G_n + b$

Proposed embedded multi-gene genetic programming

- Feature extraction
- Solution optimization

Theoretical analysis

$$Q_a = F_1(Q_w, W, k_s, s, h, l, \alpha, \theta, \rho_a, \rho_w, d, V, \Delta p, \mu, \sigma, g)$$

$$\Pi_{1} = \frac{Q_{a}}{g^{1/2} d^{5/2}}, \Pi_{2} = \frac{W}{d}, \Pi_{3} = \frac{k_{s}}{d}$$
$$\Pi_{4} = \frac{s}{d}, \Pi_{5} = \frac{h}{d}$$
$$\Pi_{6} = \frac{l}{d}, \Pi_{7} = \alpha, \Pi_{8} = \theta$$
$$\Pi_{9} = \frac{\rho_{a}}{\mu g^{-1/2} d^{-3/2}}, \Pi_{10} = \frac{\rho_{w}}{\mu g^{-1/2} d^{-3/2}}$$
$$\Pi_{11} = \frac{V}{g^{1/2} d^{1/2}}, \Pi_{12} = \frac{\Delta p}{\mu g^{1/2} d^{-1/2}}$$
$$\Pi_{13} = \frac{Q_{w}}{g^{1/2} d^{5/2}}, \Pi_{14} = \frac{\sigma}{\mu g^{1/2} d^{1/2}}$$

$$\Pi_{1,13} = \frac{\Pi_1}{\Pi_{14}} = \frac{Q_a}{Q_w} = \beta$$
$$\Pi_{2-8} = f(\Pi_2, \Pi_3, \dots, \Pi_8) = \varphi$$
$$\Pi_{11} = \frac{V}{g^{1/2} d^{1/2}} = \mathsf{F}$$
$$\Pi_{10,11} = \Pi_{10} \Pi_{11} = \frac{\rho_w dV}{\mu} = \mathsf{R}$$
$$\Pi_{10,11,14} = \frac{\Pi_{10} \Pi_{11}}{\Pi_{14}} = \frac{\rho_w^{1/2} d^{1/2} V}{\sigma^{1/2}} = \mathsf{W}$$
$$\Pi_{9,11,12} = \frac{\Pi_{9}^{1/2} \Pi_{11}}{\Pi_{12}^{1/2}} = \frac{\rho_a^{1/2} V}{(\Delta p)^{1/2}} = \mathsf{E}$$
$$\Pi_{12,10} = \frac{\Pi_{12}}{\Pi_{10}} = \frac{\Delta p}{\rho_w g d} = P$$

 $\beta = F_2(\mathsf{F}, P, \varphi)$

Model optimization

Identification of Pareto-optimal models

Model optimization: selection of an accurate but simple solution

Model No.	Δ(CD)	Δ(Complexity)	Model No.	Δ(CD)	Δ(Complexity)	
	(%)	(%)		(%)	(%)	
1 (benchmark)	-	-	9	0.08	35.5	
2	0	4.3	10	0.08	46.2	
3	0.03	7.9	11	7.98	60.2	
4	0.05	18.3	12	8.81	71.0	
5	0.05	19.4	13	9.57	76.3	
6	0.06	24.7	14	64.91	83.9	
7	0.07	30.1	15	65.14	89.2	
8	0.08	33.3	16	90.16	98.9	

$$\beta = 8.21P + \frac{22.3P}{\mathsf{F} - P} + 4.51\mathsf{F}^{1/8} + 7.07\mathsf{F}^{1/8}\tan\left(P + 5.47\right) - 14.2$$

Comparison of different methods

	N - 1			Recalibrated								
	Met	CD		CD	CD		SC		RMSE (m ³ /s)		MAE (m ³ /s)	
	M1–3		0.281		0.279		0.596		0.447			
	M4 M5 M6		0.261 0.776 0.163		0.253 0.60 0.776 0.28 0.163 0.64		0.607		0.439			
							0.288		0.235 0.491			
							0.642					
	MLF	र		0.759 0.759			0.345		0.271			
				Trai		Testing						
letł	nod			RMSE		MAE			NCC	RMSE	MAE	
		CD	112		(m³/s)		(m³/s)	CD		NSC	(m ³ /s)	(m³/s)
IGC	SP _	0.955	55 0.953 0.155 0.119 0		0.9	47	0.946	0.152	0.118			
MG	GP	0.955	0.955 0.950 0.161 0.121		0.9	45	0.936	0.166	0.124			
βP		0.933	0.9	31	0.188		0.155	0.9	31	0.923	0.178	0.144

Comparison of different methods using Taylor diagram

- Simultaneously capture multiple efficiency metrics
- The closer to observation, the better
- EMGGP is the most accurate one

EMGGP results

• In good agreement with experiments

Summary and future work

Summary

- Multiple machine learning models are developed to determine flow discharge and aeration efficiency
- Machine learning methods show superior performance over experimental approaches

Future work

- · Reservoir water level forecasts, time series modelling
- Deep learning, e.g. long short-term memory (LSTM) and nonlinear autoregressive with external input (NARX)

Li, S. & Yang, J. A hybrid gene expression programming model for discharge prediction.

Water Management, 2021 (in press)

Li, S., Yang, J., & Liu, W. Estimation of aerator air demand by an embedded multi-gene genetic programming. *Journal of Hydroinformatics*, 2021, 23(5), 1000–1013.

Li, S., Yang, J., & Ansell, A. Discharge prediction for rectangular sharp-crested weirs by machine learning techniques. *Flow Measurement and Instrumentation*, 2021, 79, 101931.