

Long-term forecasting of wind- and hydropower availability in a fluctuating climate

 Implications for production management and investments in energy storager and electric power transmission

svensk titel:

Långsiktiga prognoser av vind- och vattenkrafttillgång i ett fluktuerande klimat – Betydelse för produktionsplanering och investeringar i energilager och kraftöverföring

Funding from the Swedish Energy Authority, 1/9 2018 – 31/10 2021

Partners: KTH, Lund University (LU), SMHI and HUVA (in-Kind)

Anders Wörman, KTH
Cintia Bertacchi Uvo; LU
Marc Girons Lopez, SMHI
Ilias Pechlivanidis, SMHI
Shuang Hao, KTH
Joakim Riml, KTH
Luigia Brandimarte, KTH
Louise Crochemore, SMHI

Project aims

1. Analyses of the coupling of climate fluctuations and hydropower availability

- a. Spatio-temporal statistics, including spatial covariation and control of climate indicators
- b. Seasonal forecast methods

2) Importance of forecasts for production planning

- a. Development of Conphyde ("Multimetodmodellen")
- b. Importance of forecasts methods in production planning models
- c. Planning of electrical system capacities, e.g. to avoid energy droughts

How the presentation is divided

Anders Wörman, KTH

Spatio-temporal statistics in hydropower availability and importance of climate-driven forecasts on production management

Cintia Bertacchi Uvo, Lund University

☐ Marc Girons Lopez, SMHI

Evaluation of seasonal forecasting skill over Sweden

Scope of research at KTH

- 1. Spatio-temporal analyses of historical hydropower potential
- Production capacity and energy storage need over Europe
- 2. Implementation of climate-driven forecasts in production management models
- Objectives on watershed scale, but
- economic objectives
- Multi-reservoir systems
- 3. How does climate periodicity affect energy system functions?

Simulated runoff data for Europe

Performed by SMHI using E-HYPE: 35 years (1981 – 2015)

Spatio-temporal analysis of hydropower balancing

f = frequency (1/T)

T = period

S(...) = power spectral density

N = number of watersheds

 ε = balancing term

$$\left. \left(\frac{\partial E}{\partial t} - P_c \right) \right|_{\Omega} = \varepsilon$$

Frequency alamaig energy by Peduired

$$f^{2}S(E) = \sum_{i=1}^{N} S(P_{c,i}) + \sum_{i\neq j}^{N} \text{Re}\{S(P_{c,i}; P_{c,j})\}$$

E Cross-spectral densities considered within coordination reach R

Global Reservoir and Dam (GRanD) Database

Potential energy of runoff in Europe

Coeficient of variation, CV	Sweden	Europe 35,408 watersheds
Daily time- series CV(P)	146%	36%
Annual time- series CV(P)	16%	5.9%
5-year time- series CV(P)	8.0%	2.4%

Reference: Wörman A, Lindstrom G, Riml J.2017.

Climatic control on hydropower availability

Coherence between power of all runoff in Europe and climate indicators

Significant decrease of energy storage demand with coordination distance

Coordination distances, R

DD = Decimal degrees (43.5 - 78.7 km between 67 N to 45 N)

Development of production optimization system

Forecast pre-processer

- Ensemble of stochastic runoff time-series
 - Reflecting climate periodicity

Spin-up simulation of hydropower system - Initial conditions

- 2. Large-basin hydropower optimization model
- Watershed dynamics
- Production and economy
- Monte Carlo with regard to forecast
- Parameter uncertainty analysis

Verification

Historical runoff data

Historical production data

- 3. Analysis of importance and recommendations
- Importance of climate-driven forecasts on production
- Recommendations

Testing on Dalälven River Basin

Ensemble classification

Group 1: Odd year, wet month Group 2: Even year, dry month Group 3: Odd year, dry month Group 4: Even year, wet month

Conclusions (1/3)

- Spatio-temporal <u>coordination of the hydropower production</u> over Europe can potentially stand for nearly four (4) times as high energy storage gain as the storage capacity of hydropower reservoirs.
- The most <u>significant gain</u> from spatial coordination of hydropower production is obtained on distances <u>up to 3,000 km</u>.
- Forecasts of <u>bi-annual periodicity</u> (dry-wet years) <u>can affect hydropower</u> production management.